Joint Segmentation and Classification
نویسندگان
چکیده
Automatic video segmentation and action recognition has been a long-standing problem in computer vision. Much work in the literature treats video segmentation and action recognition as two independent problems; while segmentation is often done without a temporal model of the activity, action recognition is usually performed on pre-segmented clips. In this paper we propose a novel method that avoids the limitations of the above approaches by jointly performing video segmentation and action recognition. Unlike standard approaches based on extensions of dynamic Bayesian networks, our method is based on a discriminative temporal extension of the spatial bag-of-words model that has been very popular in object recognition. The classification is performed robustly within a multi-class SVM framework whereas the inference over the segments is done efficiently with dynamic programming. Experimental results on honeybee, Weizmann, and Hollywood datasets illustrate the benefits of our approach compared to state-of-the-art methods.
منابع مشابه
Modified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملClassification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet
Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...
متن کاملProstate segmentation and lesions classification in CT images using Mask R-CNN
Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...
متن کاملDocument Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملPlant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کاملA Joint Segmentation and Classification Framework for Sentiment Analysis
In this paper, we propose a joint segmentation and classification framework for sentiment analysis. Existing sentiment classification algorithms typically split a sentence as a word sequence, which does not effectively handle the inconsistent sentiment polarity between a phrase and the words it contains, such as “not bad” and “a great deal of ”. We address this issue by developing a joint segme...
متن کامل